\qquad

Momentum Problem-Solving

Read from Lesson 2 of the Momentum and Collisions chapter at The Physics Classroom:
http://www.physicsclassroom.com/Class/momentum/u412d.html http://www.physicsclassroom.com/Class/momentum/u412e.html

MOP Connection: Momentum and Collisions: sublevels 8 and 9

1. Determine the post-collision velocities of the following objects or combination of objects.

a. Before After	b.
c. $\begin{aligned} 10(6)+3(3)= & 13 v^{\prime} \\ 60+9=69 & =13 v^{\prime} \\ v^{\prime} & =5.31 \mathrm{~m} / \mathrm{s} \end{aligned}$	d. $\begin{aligned} 10(6)+3(3) & =10 v^{\prime}+3(9) \\ 69 & =10 v^{\prime}+27 \\ v^{\prime} & =4.2 \mathrm{~m} / \mathrm{s} \end{aligned}$
e. Before After $\begin{aligned} 3(3)+2(-2) & =3 v^{\prime}+2(4) \\ 9+-4=5 & =3 v^{\prime}+8 \\ v^{\prime} & =-1 \mathrm{~m} / \mathrm{s} \text { (left) } \end{aligned}$	f. $\begin{aligned} 3(6)+5(4) & =3(3.5)+5 v^{\prime} \\ 38 & =5 v^{\prime}+10.5 \\ v^{\prime} & =5.5 \mathrm{~m} / \mathrm{s} \end{aligned}$

2. A $2.1-\mathrm{kg}$ brick is placed gently upon a $2.9-\mathrm{kg}$ cart originally moving with a speed of $26 \mathrm{~cm} / \mathrm{s}$. Determine the post-collision speed of the combination of brick and cart.
Forward: +

$$
\begin{aligned}
& 2.9(26)=5 \cdot v^{\prime} \\
& v^{\prime}=15.08 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

3. A $98-\mathrm{kg}$ fullback is running along at $8.6 \mathrm{~m} / \mathrm{s}$ when a $76-\mathrm{kg}$ defensive back running in the same direction at $9.8 \mathrm{~m} / \mathrm{s}$ jumps on his back. What is the post-collision speed of the two players immediately after the tackle?
Forward: +

$$
\begin{gathered}
98(8.6)+76(9.8)=174 \cdot v^{\prime} \\
v^{\prime}=9.12 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

4. A $0.112-\mathrm{kg}$ billiard ball moving at $154 \mathrm{~cm} / \mathrm{s}$ strikes a second billiard ball of the same mass moving in the opposite direction at $46 \mathrm{~cm} / \mathrm{s}$. The second billiard ball rebounds and travels at $72 \mathrm{~cm} / \mathrm{s}$ after the head-on collision. Determine the post-collision velocity of the first billiard ball.
Forward: +

$$
\begin{array}{r}
0.112(154)+0.112(-46)=0.112\left(v^{\prime}\right)+0.112(72) \\
v^{\prime}=36 \mathrm{~cm} / \mathrm{s} \text { (in its original direction) }
\end{array}
$$

5. A $225-\mathrm{kg}$ bumper car (and its occupant) is moving north at $98 \mathrm{~cm} / \mathrm{s}$ when it hits a $198-\mathrm{kg}$ car (occupant mass included) moving north at $28 \mathrm{~cm} / \mathrm{s}$. The $198-\mathrm{kg}$ car is moving north at $71 \mathrm{~cm} / \mathrm{s}$ after the head-on collision. Determine the post-collision velocity of the $225-\mathrm{kg}$ car.
North: +

$$
\begin{gathered}
225(98)+198(28)=198(71)+225\left(v^{\prime}\right) \\
v^{\prime}=60.2 \mathrm{~cm} / \mathrm{s}, \text { North }
\end{gathered}
$$

6. A $4.88-\mathrm{kg}$ bowling ball moving east at $2.41 \mathrm{~m} / \mathrm{s}$ strikes a stationary $0.95-\mathrm{kg}$ bowling pin. Immediately after the head-on collision, the pin is moving east at $5.19 \mathrm{~m} / \mathrm{s}$. Determine the postcollision velocity of the bowling ball.
East: +

$$
\begin{gathered}
4.88(2.41)+0.95(0)=4.88\left(v^{\prime}\right)+0.95(5.19) \\
v^{\prime}=1.4 \mathrm{~m} / \mathrm{s}, \text { East }
\end{gathered}
$$

