

2. An irregularly shaped rock has an average density of 8 g/cm³ and a weight in air of 90 N. When the rock is suspended in water and fully submerged, what will be the tension in the supporting wire?

W=10·m, so m = 9 kg	$ ho = 8000 \text{kg/m}^3$	$V=m/\rho = 9/8000 = 0.001125 \text{ m}^3$
Force diagram F _T +F _B =F _W	(ups=downs), so F _T =F _W -F _B	$F_T = 90 - (8000)(10)(.001125) = 90 - 11.2 = 78.8 \text{ N}$

- 3.
 A
 "Change in pressure exerted at any point in a confined fluid is transmitted undiminished in all directions to all points in the fluid" is a statement of...

 A
 "Change in pressure exerted at any point in a confined fluid is transmitted undiminished in all directions to all points in the fluid" is a statement of...

 B
 Archimedes' Principle
 C. Bernoulli's Principle

 D
 First Law of Thermo
- 4. A bracelet that appears to be gold is suspended from a spring scale that reads 50 g in air and 46 g when the bracelet is submerged in water. The density of pure gold is 19 g/cm³. Is the bracelet pure gold? If it is an alloy, is it mixed with something of greater or lesser density than gold?

 $F_B = 0.5 - 0.46 = 0.04 \text{ N}$ $F_B = \rho g V = 1000(10)V = 0.04$ So V = 4.10⁻⁶ m³ $\rho = m/V = 0.05/4 \cdot 10^{-6} = 12500 \text{ kg/m}^3$ So, it is an alloy of gold that was mixed with something less dense.

5. A block of oak has a density of 7.2·10² kg/m³, and will thus float when placed in water. What percentage of the block will be above the waterline?

By Archimedes: $W_{Fluid displaced} = W_{Object}$ and weight = m·g, so $m_{Fluid displaced} = m_{Object}$ using $\rho V = m$, we get $\rho_{Fluid} V_{Submerged} = \rho_{Object} V_{Total}$ Percent is defined as part of the total, so solve for $V_{Submerged} / V_{Total}$ That means the % submerged is $\rho_{Object} / \rho_{Fluid}$! % submerged is 720/1000 or 72%, so

% above surface = 28%

6. Water flows through a hose of radius 6 mm at a rate of 2.5 m/s. What should the radius of the nozzle be to make the water leave at 10 m/s? About how long would it take to fill a 34 liter bucket?

$J_{hose} = J_{water}$	$A_1v_1 = A_2v_2$	$J = 0.00028 \text{ m}^3/\text{s} = \text{V/t}$
$\pi(.006)^2(2.5) = \pi(r)^2(10)$	[π cancels out]	0.00028 = 0.034 / t
r = 0.003 m <u>or</u> 3 mm		t = 121 s or about 2 mins

7. A boat strikes an underwater rock and opens a pencil-sized crack 7 mm wide and 150 mm long in its hull, 65 cm below the waterline. If the crew takes 5 minutes to locate and plug the crack, how much water will they have to pump out of the hold? How much does that water weigh? $P_1 + \rho gh_1 + 1/2\rho v_1^2 = P_2 + \rho gh_2 + 1/2\rho v_2^2$ If the "1" side of the equation is outside the ship... P_1 is just the ρ gh value at the depth of the crack. h_1 and h_2 are the same (the water entering the crack flows straight in), v_1 will be 0 if the boat is stopped after the damage, P_2 will be zero since there's no water in the ship initially. We're left with $P_1 = 1/2\rho v_2^2$ And plugging in gives us a speed of 3.61 m/s $V/t = A \cdot v_r$, so $V = A \cdot t \cdot v = 0.00105(300)(3.61) = 1.14 \text{ m}^3$.