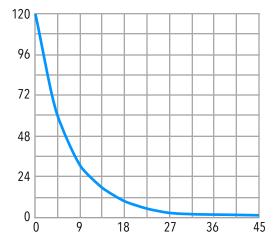

Name	Pd	
Is Your Mass Defective?		
1. How much energy is released during the reaction: ${}^1_1H + {}^7_3Li \rightarrow 2 {}^4_2He$	lsotope/ Species	Rest Mass
$1.00783 + 7.016 \rightarrow 2(4.0026)$	е	0.00055 u
$8.02383 \rightarrow 8.0052 \qquad \Delta m = 0.01863u$	n	1.0087 u
$E=mc^2 = 0.01863(931) = 17.34 \text{ MeV}$	H-1	1.00783 u
2. How much energy is released by each reaction of the following variety: ${}^{3}_{1}H + {}^{2}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n$ (One of the most promising fusion reactions!) $3.01604 + 2.0141 \rightarrow 4.0026 + 1.0087$ $5.03014 \rightarrow 5.0113$ $\Delta m = 0.01863u$ $E=mc^{2} = 0.01863(931) = 17.54 \text{ MeV}$	H-2	2.0141 u
	H-3	3.01604 u
	He-4	4.0026 u
	Li-7	7.016 u
	Nb-93	92.906 u
	Ba-138	137.905 u
${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{138}_{56}Ba + {}^{93}_{43}Nb + 5 {}^{1}_{0}n + 5 {}^{0}_{-1}e$	U-235	235.0439 u
$1.0087 + 235.0439 \rightarrow 137.905 + 92.906 + 5(1.0087) + 5(0.00055)$ 3. The above reaction shows the spontaneous fission decay of uranium into two daughter nuclei, 5 neutrons, and 5 beta par energy would be released when 1 atom on uranium is struck by one slow neutron? How much energy from 1 kg of urani $236.0526 \rightarrow 235.8573 \qquad \Delta m = 0.19535u$		

E=mc² = 0.19535(931) = 181.87 MeV

1000 g· 1mol/235.0439 g · $6.022 \cdot 10^{23}$ atoms/mol = $2.562 \cdot 10^{24}$ atoms ($2.562 \cdot 10^{24}$ atoms)(181.97 MeV/atom) = $4.66 \cdot 10^{26}$ MeV = $7.47 \cdot 10^{13}$ J

4. deBroglie said that every particle behaves like a wave and vice-versa. Schrödinger said that every wave/particle has a wave function which shows the probability of the particle/wave being versus particular locations. Below is a graph of a wave function. Choose the **TWO** locations



5. You have a sample of 120 grams of pure Ca-47 that undergoes β^- decay. Calcium-47 has a half life of 4.5 days. Draw a graph showing the grams of Ca-47 remaining as a function of time (Don't forget to label your axes). How much Ca-47 would be left after 63 days? What does

the Ca-47 become? How much energy is released with every decay if the energy of the ejected neutrino is negligible?

63/4.5 = 14 halflives $(1/2)^{14} = 6.1 \cdot 10^{-5}$ times the 120 g = 0.0073 g of Ca-47

 $Ca-47 \rightarrow \beta^- + Sc-47$

