1. How far away from a concave mirror with focal length 15 cm should an 8 cm tall object be placed to form a real image 50 cm from the mirror? What would be the magnification of the image? Fully describe the image (type, orientation, height)

$$
\begin{array}{rl}
f= & 15 \mathrm{~cm} \quad \frac{1}{f}=\frac{1}{d_{0}}+\frac{1}{d_{i}} \quad M=\frac{-d_{i}}{d_{0}}=\frac{-50}{21.43}=-2.33 \\
h_{0}=8 \mathrm{com} & \frac{1}{15}, \frac{1}{d_{0}}+\frac{1}{20} \quad M=-2.33=\frac{h_{i}}{h_{0}}=\frac{h_{i}}{8} \quad h_{i}=-18.64 \mathrm{~cm} \\
d_{i}=50 \mathrm{~cm} & 2 . \mathrm{A} 2 \mathrm{~cm} \text { tall } d_{0}=21.42 .43 \mathrm{com}
\end{array}
$$

$3 . \mathrm{A} 10 \mathrm{~cm}$ tall upright image appears to be located 40 cm behind a concave mirror with a radius of curvature of 1 m . Fully describe the object.

$$
\begin{aligned}
& h_{i}=10 \mathrm{~cm} \\
& d_{i}=-40 \mathrm{~m} \\
& R=1 \mathrm{~m} \\
& \frac{R}{2}=f=50 \mathrm{~cm} \\
& \frac{1}{50}=\frac{1}{60}+\frac{1}{-40} \\
& d_{0}=22.22 \mathrm{~cm}
\end{aligned}
$$

4. A concave mirror produces an image that is the same size as the object when the object is 60 cm from the mirror. What is the focal length of the mirror?
$M=-1$ POny happen of R

$$
R=60 \mathrm{~cm} \quad f=30 \mathrm{~cm}
$$

5. Where should you place a candle in front of a concave mirror of focal length 45 cm to produce an inverted image that is half the size of the object?

$$
\begin{array}{ll}
f=45 & \frac{1}{f}=\frac{1}{d_{0}}+\frac{1}{d_{i}} \\
M=\frac{-d_{i}}{d_{0}} & \frac{1}{45}=\frac{1}{d_{0}}+\frac{1}{.5 d_{0}}=\frac{1}{d_{0}}+\frac{2}{d_{0}}=\frac{3}{d_{0}} \\
7.5=\frac{d_{i}^{\prime}}{d_{0}} & \frac{1}{45}=\frac{3}{d_{0}} \quad d_{0}=135 \mathrm{~cm} \\
.5 d_{0}=d_{i} & M=+2
\end{array}
$$

$M=+2$
$M=\frac{-d_{i}}{d_{0}}$
$1.5=\frac{f_{l} l_{i}}{d_{0}}$
$.5 d_{0}=d_{i}$
6.A. concave minor produces
focal length of the miner
no right image

$$
\begin{array}{ll}
M=\frac{-d i}{10} & \frac{1}{1}=\frac{1}{35}+\frac{1}{-70} \\
+2=\frac{-d i}{35} & f=70 \mathrm{~cm} \\
d_{i}=-70 \mathrm{~cm} &
\end{array}
$$

7. Repeat the last problem, but assume the image was inverted instead of upright! (Well, only do this problem if it's possible...)

$$
\begin{aligned}
& M=\frac{-d_{i}}{d_{0}} \\
& -2=\frac{-d_{i}}{d_{0}}=\frac{-d_{i}}{35} \\
& -d_{i}=-70 \\
& d_{i}=70 \mathrm{co}
\end{aligned}
$$

$$
\begin{aligned}
& M=-2 \\
& \frac{1}{f}=\frac{1}{35}+\frac{1}{70} \\
& f=23.33 \mathrm{~cm}
\end{aligned}
$$

