A Modern Review

1. Calculate the deBroglie wavelength of the Earth. Its orbital speed is about $3 \cdot 10^{4} \mathrm{~m} / \mathrm{s}$.

$$
\lambda_{\mathrm{deB}}=\mathrm{h} / \mathrm{mv}=6.626 \cdot 10^{-34} /\left(6 \cdot 10^{24}\right)\left(3 \cdot 10^{4}\right)=3.68 \cdot 10^{-63}
$$

2. The work function of copper is 4.5 eV . Find the maximum kinetic energy of the photoelectrons emitted when ultraviolet light with frequency $1.5 \cdot 10^{15} \mathrm{~Hz}$ falls on the copper surface.

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{ph}}=\mathrm{hf}=4.14 \cdot 10^{-15}\left(1.5 \cdot 10^{15}\right)=6.21 \mathrm{eV} \\
& \mathrm{E}_{\mathrm{K}}=\mathrm{E}_{\mathrm{ph}}-\phi=6.21-4.5=1.71 \mathrm{eV}
\end{aligned}
$$

3. The threshold frequency for calcium is $7.7 \cdot 10^{14} \mathrm{~Hz}$. Find the maximum kinetic energy (in eV) of the electrons emitted when light with a frequency of $1.2 \cdot 10^{15} \mathrm{~Hz}$ is directed at the calcium's surface.

$$
\begin{aligned}
& \phi=h f_{0}=4.14 \cdot 10^{-15}\left(7.7 \cdot 10^{14}\right)=3.19 \mathrm{eV} \\
& \mathrm{E}_{\mathrm{ph}}=\mathrm{h} f=4.14 \cdot 10^{-15}\left(1.2 \cdot 10^{15}\right)=4.97 \mathrm{eV} \\
& \quad E_{K}=E_{p h}-\phi=4.97-3.19=1.78 \mathrm{eV}
\end{aligned}
$$

4. What is the maximum wavelength of light that leads to photoelectric emission in platinum $\left(\phi=1.02 \cdot 10^{-18} \mathrm{~J}\right)$?

$$
\begin{aligned}
\phi=h c / \lambda_{0} & =1.242 \cdot 10^{3} /\left(7.7 \cdot 10^{14}\right)=3.19 \mathrm{eV} \\
\lambda_{0} & =\mathrm{hc} / \phi=1.242 \cdot 10^{3} /(6.35)=195.6 \mathrm{~nm}
\end{aligned}
$$

5. What is the deBroglie wavelength of a 1 mg grain of sand blown by a wind with a velocity of $20 \mathrm{~m} / \mathrm{s}$?

$$
\lambda_{\mathrm{deB}}=\mathrm{h} / \mathrm{mv}=6.626 \cdot 10^{-34} /\left(1 \cdot 10^{-6}\right)(20)=3.31 \cdot 10^{-29}
$$

(Still very particle-like!)

$$
n=5
$$

6. An electron in a hydrogen atom jumps from the ground state up to the $4^{\text {th }}$ excited state. Calculate the amount of energy absorbed by the electron during this process. Where did this energy come from?

$$
\Delta \mathrm{E}=13.6-0.544
$$

$$
\Delta \mathrm{E}=13.056 \mathrm{eV} \text { [It comes from light hitting the atom] }
$$

$$
n=4 \quad n=1
$$

HYDROGEN

7. The electron in problem \#6 now jumps down to the $3^{\text {rd }}$ excited state and then to the ground state. What are the frequencies of the photons emitted during this process? What colors of light are these photons?

$$
\begin{array}{ll}
\text { 5-4: } & \Delta E=0.85-0.544=0.306 \mathrm{eV} \\
4-1: & \Delta E=13.6-0.85=12.75 \mathrm{eV}
\end{array} \quad \lambda_{2}=h c / \phi=1.242 \cdot 10^{3} /(0.306)=4058 \mathrm{~nm}, 1.242 \cdot 10^{3} /(12.75)=97.4 \mathrm{~nm}
$$

$n=2 \longrightarrow 3.40 \mathrm{eV}$

λ_{1} is infrared and λ_{2} is ultraviolet (not really "colors" at all)

